Modernizing R’s web-mapping capabilities
Tim Appelhans
2025-10-01

Executive Summary

When it comes to web-mapping in R, RStudio’s (Posit’s) leaflet package has established
itself as the de-facto standard. While the underlying JavaScript web mapping library (also
named leaflet) is versatile and robust, it lacks certain key aspects of newer web-mapping
libraries, such as MapLibre GL JS (see mapg]l for a recent R wrapper). This especially includes
the lack of native 3D WebGL rendering. As such, leaflet struggles with the rendering of
large data (i.e. more than 1 million points/vertices). Another part is the slow data transfer
from R memory to the browser. Several (de-)serialization steps are needed to transfer R’s
in-memory data representation to the browser, usually realized using GeoJSON data format.
New tools, such as GeoArrow speed up this process tremendously.

Furthermore, the geo-spatial community has adopted cloud native geospatial data formats for
storage, as well as for analysing and visualising very large data collections. Enabling direct
rendering of such data in the browser will help researchers find and filter relevant data more
quickly.

Having support for cloud-native formats and a way to visualise geo-spatial quickly will strongly
enhance the user experience across the whole R-spatial community. Packages such as tmap,
mapdeck and also R package leaflet will benefit from the implementations described in this
proposal.

This application aims at solving current pain points for geo-spatial R users in 3 steps:

1. Utilising (geo)arrow for fast geo-spatial data transfer

Two new R packages will be developed to

a. enable fast transfer of geo-spatial data from R memory to the browser, using
geoarrow and

b. allow fast web map overlays of these data by eliminating the need to (de-)serialise
them multiple times. Development of this has already started in geoarrowDeckgl.


https://github.com/rstudio/leaflet
https://maplibre.org/maplibre-gl-js/docs/
https://github.com/walkerke/mapgl
https://geojson.org/
https://geoarrow.org/
https://guide.cloudnativegeo.org/#data-type-to-traditional-to-cloud-optimized-geospatial-file-format-table
https://github.com/r-tmap/tmap
https://github.com/SymbolixAU/mapdeck
https://github.com/r-spatial/geoarrowDeckgl

2. Direct rendering support for cloud-native data formats

A minimum set cloud native data formats that will be supported include GeoParquet,
flatgeobuf and Cloud Optimised Geotiff, but can most likely be extended to Cloud Op-
timised Point Clouds and others. Note that PMTiles is already natively supported by R
package mapgl.

3. Bindings to and instructions for existing frameworks

Even though development of 1. and 2. will concentrate on package mapgl, and hence,
maplibre as the rendering platform, it will not be limited to it. We aim at providing
dedicated bindings for other packages including leaflet, tmap, mapdeck and mapview.

With these developments, web-mapping capabilities in R will become more user-friendly, as
they will enable scalability of geo-spatial data visualisation beyond current limits. Utilising
geoarrow for transfer of in-memory data will reduce rendering times significantly and support
for cloud native data formats will enable visualisation of larger-than-memory data.

To achieve this, the applicant requests funds of 12000€ (see Section Budget & funding plan
for details).

Signatories

Supporting authors:

o Kyle Walker - mapgl

o Dewey Dunnington - geoarrow | nanoarrow
¢ Kira McDonald - mapglview

e Edzer Pebesma - r-spatial

e Martijn Tennekes - r-tmap

Project team

Tim Appelhans

Contributors

o Jakub Nowosad - geocompx
o FEdzer Pebesma - r-spatial


https://geoparquet.org/
https://github.com/flatgeobuf/flatgeobuf
https://cogeo.org/
https://copc.io/
https://copc.io/
https://docs.protomaps.com/pmtiles/
https://github.com/r-spatial/mapview
https://tim-salabim.codeberg.page/modernize_mapview/modernize_r_web_mapping.html#budget-funding-plan
https://walkerke.r-universe.dev/builds
https://walkerke.r-universe.dev/mapgl
https://paleolimbot.r-universe.dev/builds
https://geoarrow.r-universe.dev/geoarrow
https://apache.r-universe.dev/nanoarrow
https://github.com/kmcd39
https://github.com/kmcd39/mapglview
https://edzer.r-universe.dev/builds
https://r-spatial.r-universe.dev/builds
https://mtennekes.r-universe.dev/builds
https://r-tmap.r-universe.dev/builds
https://tim-salabim.r-universe.dev/builds
https://nowosad.r-universe.dev/builds
https://geocompx.org/
https://edzer.r-universe.dev/builds
https://r-spatial.r-universe.dev/builds

Consulted

Josiah Parry

The Problem

Compared to a decade ago, creation of geo-spatial data sets from various domains has led
to increasingly large geo-spatial data collections. New, modern, mostly web-based tools have
emerged in the geo-spatial data science realm in recent years that enable handling larger data
volumes in storage, analysis and visualisation. Removing friction and performance bottlenecks
have provided end-users with smooth and performant workflows. From an R perspective, these
tools can roughly be broken down into three categories:

1. Data storage

Traditionally, data to be analysed used to reside on the users machine. This has changed
significantly in recent years, mainly as a consequence of the sheer amount of data being
available.

The geo-spatial community is certainly not the only community to see this shift to cloud-
native data, and just like others, it has developed tailored formats for geo-spatial data
that are optimised for the domain. It is clear that Cloud native geospatial data formats
have become more and more relevant and are being widely used in the field. While
R already has support for some of these formats, e.g. flatgeobuf and Cloud Optimised
Geotiff are supported in package leafem, other formats, such as GeoParquet or Cloud
Optimised Point Clouds are still unsupported, at least for direct visualisation without
the need to read into R, memory.

2. Data transfer

Transferring in-memory data from a local R process to the web browser for visualisation
is generally done through several serialization and de-serialization steps via GeoJSON data
representation. While this is robust and well established, it can be very slow, especially
for large and complicated geospatial data. While it’s hard to quantify solidly, currently
available solutions will certainly struggle with data beyond 1 million points (vertices
in case of line or polygon data), especially when additional attribute data should be
visualised.

New technologies, such as GeoArrow, have emerged and provide unprecendented per-
fomance/speed enhancements, as data can be transferred directly to the web browser
without the need for copies and little to no (de-)serialization. We have already started
to implement GeoArrow support in geoArrowDeckgl, an add-on package for mapgl based
on the works of Kyle Barron’s deck.gl-layers, a fast, memory efficient JavaScript library
for deck.gl.


https://josiahparry.r-universe.dev/builds
https://guide.cloudnativegeo.org/#data-type-to-traditional-to-cloud-optimized-geospatial-file-format-table
https://github.com/flatgeobuf/flatgeobuf
https://cogeo.org/
https://cogeo.org/
https://github.com/r-spatial/leafem
https://geoparquet.org/
https://copc.io/
https://copc.io/
https://geoarrow.org/
https://github.com/r-spatial/geoarrowDeckgl
https://github.com/geoarrow/deck.gl-layers
https://deck.gl/

3. WebGL based mapping

As mentioned earlier, leaflet is a well established and widely used web-mapping library,
yet, it has two distinct drawbacks:

e it is not using WebGL natively, and
e it is 2D only.

While extensions exist to enable WebGL rendering (e.g. Leaflet.glify with an R wrapper
package leafgl), there is no way of extending leaflet to support 3D rendering. Yet, many
geo-spatial sub-domains have a need to visualise 3D data, such as flight tracks, animal
movement data, building heights, terrain and hydrological data sets, to name a few.

Furthermore, some leaflet extensions relying on e.g. leafem are currently not well
maintained or developed. It remains to be seen if and how some of these will be updated
to support migration to the pending major, and potentially breaking release of leafletjs
2.0.

Reliance on leaflet dependencies that are not well maintained poses a significant risk
for the future of R’s web-mapping capabilities.

MapLibre GL JS is a younger, more performant and actively maintained web-mapping
JavaScript library and Kyle Walker has already ported large parts of it to R with his
mapgl package. MapLibre supports a few notable things out-of-the-box:

e WebGL rendering,

e 3D rendering,

o PMTiles data (for larger-than-RAM data), and

o Vector tiles for background map layers (leaflet uses raster tiles by default) - mean-
ing that styling is much more flexible and performant as it can be done client-side
on-the-fly.

An overview of selected Maplibre capabilities as compared to leaflet can be found in this
blog post.

All in all, to adjust to the changing landscape of geo-spatial data types and availability, efforts
are needed to support visualisation of growing data amounts and to ensure that R keeps up
with continuing developments in the field outside of R.

The proposal

Overview

To overcome the outlined problems with regards to slow data transfer between R and the
browser and lack of cloud-native data support, two main implementations will be realised


https://github.com/robertleeplummerjr/Leaflet.glify
https://github.com/r-spatial/leafgl
https://leafletjs.com/2025/05/18/leaflet-2.0.0-alpha.html
https://leafletjs.com/2025/05/18/leaflet-2.0.0-alpha.html
https://maplibre.org/maplibre-gl-js/docs/
https://walkerke.r-universe.dev/builds
https://tim-salabim.codeberg.page/sotwm/sotwm.html
https://tim-salabim.codeberg.page/sotwm/sotwm.html

with this proposal. First, a small package (working title geoarrowWidget) will be developed
to provide general functionality for quickly transferring geo-spatial data from R memory to
the browser via the geoarrow data specification. Second, geoarrowDeckgl will be finalised
and extended with dedicated functions to both enable overlays for maplibre maps, as well as
support visualisation of cloud-native data formats directly, i.e. without the need to read data
into R memory. These developments will focus on extending web-mapping workflows provided
by package mapgl, however, in a third step geoarrowDeckgl will be expanded with dedicated
bindings for other web-mapping R packages, such as leaflet, tmap, mapdeck and mapview so
that a wide range of R spatial users will benefit from these efforts.

Detail

In more detail, this proposal can be divided into three major milestones:
1. Fast & efficient geo-spatial data transfer and web-mapping overlays

Data transfer functionality between R memory and the browser will be implemented in a
small dedicated add-on package to htmlwidgets - geoarrowWidget. It will provide functions
to convert geo-spatial in-memory data formats, such as sf, terra or wk, to geoarrow and to
attach relevant dependencies (the geoarrow data and JavaScript libs to read it) to existing
widgets. The intention is that other, including non-mapping applications can benefit from this
as well. This functionality already largely exists, but is currently part of geoarrowDeckgl and
will be moved to this new package.

geoarrowDeckgl will focus on providing highly performant overlays for maplibre maps us-
ing deck.gl layers utilising geoarrow/deck.gl-layers which is also used by the python library
lonboard. This library is optimised for fast data processing in multiple ways, for example by
copying “binary buffers directly from an Arrow JS Table object to the GPU”, among other
optimisations (see here for a full list of features). Deck.gl is a GPU-powered tool for ren-
dering large data amounts in the browser. It has dedicated support for several web-mapping
libraries, including e.g. maplibre and leaflet, to overlay its layers on top base maps. The
API of geoarrowDeckgl is tightly coupled to that of Deck.gl, in order to fully utilise and
closely reflect the underlying functionality. This also enables easy adaptability to potential
future API changes or extensions of this upstream dependency.

To achieve the above, we rely on packages geoarrow and nanoarrow for data conversion on
the R side and several JavaScript libraries, such as arrowjs for client-side (browser) data
handling, which will be shipped with the above mentioned newly developed packages (see list
of dependencies below).

2. Direct rendering support for cloud-native geo-spatial data formats


https://github.com/ramnathv/htmlwidgets
https://github.com/r-spatial/sf
https://github.com/rspatial/terra
https://github.com/paleolimbot/wk/
https://github.com/geoarrow/deck.gl-layers
https://github.com/developmentseed/lonboard
https://github.com/geoarrow/deck.gl-layers?tab=readme-ov-file#features
https://geoarrow.org/geoarrow-r/
https://github.com/apache/arrow-nanoarrow/tree/main/r
https://arrow.apache.org/js/current/
https://tim-salabim.codeberg.page/modernize_mapview/modernize_r_web_mapping.html#external-dependencies
https://tim-salabim.codeberg.page/modernize_mapview/modernize_r_web_mapping.html#external-dependencies

Most data in cloud-native geo-spatial formats can nowadays be read into R through packages
such as sf and terra, among others. However, for visualising data that resides in the cloud
it is preferable to not first materialise these data in R memory before sending it off to the
rendering canvas in the browser, especially if only a subset of the data is of interest. Cloud-
native data formats support partial reads so that data transfer over the wire is minimised,
which makes them ideal for web-mapping applications. Reading the complete file and then
rendering only parts of it would ignore the benefits of these data formats.

To overcome this, geoarrowDeckgl will provide functionality to allow users to visualise cloud
data directly in the browser. The aim is to provide an API similar to that developed in 1.,
so that e.g. styling instructions can be defined in R, transferred to the browser and then be
applied to the incoming data when it arrives. This means that the user is not expected to
know any JavaScript. Functionality for cloud optimized geotiffs can be implemented with the
Maplibre GL JS add-on maplibre-cog-protocol, while both geoparquet and flatgeobuf are
supported by geoarrow/deck.gl-layers.

3. Bindings for existing mapping packages

The third aim of this proposal is to scale the developments of 1. and 2. to the wider R spatial
community.

Separating development of functionality for data transfer and web map overlays ensures that
other, potentially non-mapping applications can benefit from fast data transfer without over-
head. Detailed documentation and dedicated vignettes outlining how to use the transfer
functionality will enable other developers to adopt it for their own needs. Note that this new
package for data transfer will mainly be of interest to developers, not for end users; end users
will benefit when it is adopted in downstream packages.

The development of geoarrowDeckgl will benefit both R developers and end users, as these de-
velopments will be made available for other web-mapping packages beyond mapgl, i.e. leaflet
and mapdeck at the very least. Deck.gl has a dedicated add-on package for leaflet support
(deck.gl-community /leaflet), however, as their web page states, this is in minimal maintainence
mode, so it remains to be seen how long leaflet support can be realised. mapdeck is a wrapper
around Deck.gl and as such it will be easy to provide bindings for it. tmap now has a dedicated
extension package for using mapgl as the base map rendering paltform called tmap .mapgl which
will also benefit from the developments made in geoarrowDeckgl. mapview is a higher-level
mapping package that supports multiple rendering platforms and, as such, is easily extendable
to mapgl and can benefit from performant rendering support developed through the efforts of
this proposal. In fact, a first bare-bones implementation of mapgl as a rendering platform is
already implemented in an experimental branch of mapview.


https://github.com/geomatico/maplibre-cog-protocol
https://github.com/geoarrow/deck.gl-layers?tab=readme-ov-file#geoparquet
https://visgl.github.io/deck.gl-community/docs/modules/leaflet
https://r-tmap.r-universe.dev/tmap.mapgl
https://github.com/r-spatial/mapview/blob/501-feature-request-support-mapgl-as-a-rendering-platform/R/mapgl.R

Minimum Viable Product
A minimum viable product of the above outlined proposal will include (in order of develop-

ment):

e a new CRAN package - geoarrowWidget - for fast data transfer as an add-on to
htmlwidgets
e a CRAN release of geoarrowDeckgl including:

— support for the major geo-spatial vector layer types for points, lines and polygons

— support for direct rendering of cloud native geotiff, geoparquet and
flatgeobuf data in the browser

— methods to support leaflet and mapdeck based workflows

¢ detailed documentation, vignettes and blog-posts highlighting these new developments

Blog-posts will most likely be published on r-spatial.org, but other platforms such as the
RConsortium blog can also be used, when desired by the ISC.

Architecture

The main delivery of this proposal will be geoarrowDeckgl, a new R package for fast and effi-
cient overlays of geo-spatial data on web maps. It will provide dedicated methods for the web-
mapping packages mapgl, leaflet and mapdeck. Another small package - geoarrowWidget
- will be developed for fast data transfer from R memory to the browser, which will be in
imported by geoarrowDeckgl.

Assumptions

There are no critical assumptions being made for this project.

External dependencies

R dependencies:

e geoarrow
e Nanoarrow

JavaScript dependencies:

e Deck.gl
o geoarrow/deck.gl-layers
* aITOWjs


https://r-spatial.org
https://github.com/geoarrow/geoarrow-r
https://github.com/apache/arrow-nanoarrow/tree/main/r
https://github.com/geoarrow/deck.gl-layers
https://arrow.apache.org/js/current/

e geoarrowjs
o deck.gl-community /leaflet

Project plan

Proposed timeline [Months]

geoarrowWidget

Release geoarrowWidget
Announcement blog post

geoarrowDeckgl - basic

. Relgase geoarrowDgckgl
. R-spatial blog post

geoarrowDeckgl - cloud native data
_—

Bindings (leaflet,

mapdeck, tmap

F

nal blog post

01 02 03 04 05 06 07 08

Proposed timeline; Milestones shown as diamonds.

Start-up phase
A start-up phase is not needed. Work can start right away by separating out the data transfer

functionality from geoarrowDeckgl to geoarrowWidget, so that initial releases of these two
packages may even happen within the first 1-2 months of the project.

Technical delivery

All packages will be developed under the umbrella of the r-spatial github organisation and
once mature, will be released on CRAN.

Other aspects

A first announcement blog post will be pusblished on the r-spatial blog once geoarrowWidget
is released. A second post is planned for the CRAN release of geoarrowDeckgl and a final post
will highlight the implementations in other mapping frameworks, such as leaflet, tmap and

09


https://geoarrow.org/geoarrow-js/
https://visgl.github.io/deck.gl-community/docs/modules/leaflet
https://github.com/r-spatial

mapdeck. Major and minor updates will also be announced via the applicants mastodon profile.
Furthermore, a talk at UseR! 2026 in Warsaw is planned. The applicant is also more than
happy to give a dedicated RConsortium webinar to highlight the developments and outcomes
of this proposal.

Budget & funding plan

As can be seen from the timeline above, there are 3 milestones, whereas the first of those can
be achieved rather quickly and can be considered foundational for the others to be delivered
in a structured and scalable manner. The remaining two major milestones of this application
are marked by the timing of the blog post releases, after about 4.5 months and at the end of
the 9 month funding period.

The applicant is currently employed on 75% contract at the Friedrich Alexander University of
Erlangen-Nirnberg. The intention of this application is to use the granted funds to extend
this contract to 100%, hence a total of 40 hours a month, which equates to 360 hours over a
period of 9 months for completing the work outlined in this proposal.

At the applicants current payment rate, 25% of his salary for 9 months amounts to about
12000€, which is the amount requested by this application. This in turn translates to roughly
34€ per hour worked, before taxes.

Success

Definition of done

This application is considered complete when

o geoarrowWidget, geoarrowDeckgl are released on CRAN, and
e support for at least leaflet and mapdeck is implemented.

Full support for tmap via tmap.mapgl is beyond the scope of this application, and would
require support from the tmap author. However, the plan is to utilise the implementations of
this proposal via dedicated pull requests.

Future work

Future work that is beyond the scope of this application may include

 implementation of further Deck.gl layer types (as supported by geoarrow/deck.gl-layers)
o transfer of the implementation to other web-mapping R packages, e.g. deckgl


https://fosstodon.org/@tim_salabim
https://user2026.r-project.org/index2.html
https://r-consortium.org/webinars/webinars.html
https://github.com/geoarrow/deck.gl-layers/tree/main/src/layers
https://cran.r-project.org/web/packages/deckgl/index.html

	Executive Summary
	Signatories
	Project team
	Contributors
	Consulted

	The Problem
	The proposal
	Overview
	Detail
	Minimum Viable Product
	Architecture
	Assumptions
	External dependencies


	Project plan
	Start-up phase
	Technical delivery
	Other aspects
	Budget & funding plan

	Success
	Definition of done
	Future work


